Linear Weingarten Helicoidal Surfaces in Isotropic Space
نویسندگان
چکیده
Introduced in 1861 [1], a Weingarten surface in the Euclidean three-dimensional space E3 is a surface M, whose mean curvature H and Gaussian curvature K satisfy a non-trivial relation Φ(H, K) = 0. Such a surface was introduced by Weingarten. The class of Weingarten surfaces is remarkably large, and it consists of intriguing surfaces in the Euclidean space: the constant mean curvature surfaces, the constant Gaussian curvature surfaces and all rotational surfaces. As a special case of Weingarten surfaces, we consider that the Weingarten relation Φ is linear in its variables. That is, Φ satisfies the following relation
منابع مشابه
Linear Weingarten Rotational Surfaces in Pseudo-Galilean 3-Space
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we classify linear Weingarten rotational surfaces in G3. A linear Weingarten surface is the surface having a linear equation between the Gaussian curvature and the mean curvature of a surface. In last section, we construct isotropic rotational surfaces in G3 with prescribed mean curvature...
متن کاملLinear Weingarten surfaces in Euclidean and hyperbolic space
In this paper we review some author’s results about Weingarten surfaces in Euclidean space R 3 and hyperbolic space H 3 . We stress here in the search of examples of linear Weingarten surfaces that satisfy a certain geometric property. First, we consider Weingarten surfaces in R 3 that are foliated by circles, proving that the surface is rotational, a Riemann example or a generalized cone. Next...
متن کاملRotational linear Weingarten surfaces of hyperbolic type
A linear Weingarten surface in Euclidean space R 3 is a surface whose mean curvature H and Gaussian curvature K satisfy a relation of the form aH + bK = c, where a, b, c ∈ R. Such a surface is said to be hyperbolic when a + 4bc < 0. In this paper we classify all rotational linear Weingarten surfaces of hyperbolic type. As a consequence, we obtain a family of complete hyperbolic linear Weingarte...
متن کاملParabolic Weingarten surfaces in hyperbolic space
A surface in hyperbolic space H 3 invariant by a group of parabolic isometries is called a parabolic surface. In this paper we investigate parabolic surfaces of H 3 that satisfy a linear Weingarten relation of the form aκ1 + bκ2 = c or aH + bK = c, where a, b, c ∈ R and, as usual, κi are the principal curvatures, H is the mean curvature and K is de Gaussian curvature. We classify all parabolic ...
متن کاملConstructions of Helicoidal Surfaces in Euclidean Space with Density
Our principal goal is to study the prescribed curvature problem in a manifold with density. In particular, we consider the Euclidean 3-space R3 with a positive density function eφ, where φ = −x2 − y2, (x, y, z) ∈ R3 and construct all the helicoidal surfaces in the space by solving the second-order non-linear ordinary differential equation with the weighted Gaussian curvature and the mean curvat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 8 شماره
صفحات -
تاریخ انتشار 2016